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Abstract

The multimodal imbalance problem has been ex-
tensively studied to prevent the undesirable sce-
nario where multimodal performance falls below
that of unimodal models. However, existing meth-
ods typically assess the strength of modalities and
perform learning simultaneously under the imbal-
anced status. This deferred strategy fails to re-
balance multimodal learning instantaneously, lead-
ing to performance degeneration. To address
this, we propose a novel multimodal learning ap-
proach, termed instantaneous probe-and-rebalance
multimodal learning (IPRM), which employs a
two-pass forward method to first probe (but not
learn) and then perform rebalanced learning un-
der the balanced status. Concretely, we first em-
ploy the geodesic multimodal mixup (GMM) to in-
corporate fusion representation and probe modal-
ity strength in the first forward phase. Then the
weights are instantaneously recalibrated based on
the probed strength, facilitating balanced training
via the second forward pass. This process is ap-
plied dynamically throughout the entire training
process. Extensive experiments reveal that our pro-
posed IPRM outperforms all baselines, achieving
state-of-the-art (SOTA) performance on numerous
widely used datasets. The code is available at
https://github.com/njustkmg/IJCAI25-IPRM.

1 Introduction
Inspired by the human ability to perceive and under-
stand the world through multiple senses, multimodal learn-
ing (MML) [Zhao et al., 2016; Yang et al., 2019; Baltru-
saitis et al., 2019; Sun et al., 2023] has emerged as a highly
popular research field in recent years. In the era of deep
learning, leveraging the powerful representational capabil-
ities of deep neural networks, deep learning-based multi-
modal learning [Sun et al., 2023] has achieved significant
advancements. In real-world applications, multimodal learn-
ing has also been successfully applied across a wide range of
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fields [Chang et al., 2015; Wang et al., 2018; Zhu et al., 2023;
Yang et al., 2024b].

Despite the abundant information provided by multimodal
data, multimodal learning is expected to deliver superior per-
formance compared to unimodal approaches. However, re-
cent studies have revealed that multimodal models sometimes
underperform compared to unimodal models in specific sce-
narios [Wang et al., 2020]. Since different modalities vary
in the amount of information they contain and their repre-
sentation capabilities, their performances also tend to be in-
consistent. Generally, strong modalities contain richer infor-
mation and exhibit higher performance, resulting in superior
outcomes, whereas weak modalities lack such advantages and
perform worse [Yang et al., 2015]. This phenomenon is com-
monly referred to as modality imbalance [Wang et al., 2020;
Huang et al., 2022; Du et al., 2022].

To deal with this problem, many efforts [Wang et al., 2020;
Huang et al., 2022; Wu et al., 2022; Zong et al., 2024] have
been made in recent years. Some scholars have approached
this topic from a theoretical perspective, investigating issues
such as generalization [Huang et al., 2021], training compet-
itiveness [Huang et al., 2022], and the greedy nature [Wu
et al., 2022] of multimodal learning. Simultaneously, nu-
merous multimodal learning methods have been proposed
to address modality imbalance, including gradient-based ap-
proaches [Peng et al., 2022; Fan et al., 2023], learning rate
modulation techniques [Yao and Mihalcea, 2022], and alter-
nating optimization paradigms designed to enhance interac-
tion [Zhang et al., 2024; Fan et al., 2024; Hua et al., 2024].
These efforts lay a theoretical and methodological founda-
tion for a comprehensive understanding of the nature of mul-
timodal learning and, to some extent, mitigate performance
degradation caused by modality imbalance.

Although numerous methods have been proposed to ad-
dress the problem of modality imbalance, existing meth-
ods [Wang et al., 2020; Li et al., 2023] predominantly adopt
a deferred strategy for modality rebalancing, i.e., probing the
strength at first and performing multimodal learning under the
imbalanced status. Among existing methods, some of them,
e.g., OGR-GB [Wang et al., 2020] and OGM [Peng et al.,
2022], first explicitly calculate multimodal imbalance-related
metrics like OGM score, and then make adjustments based
on metrics. While others [Li et al., 2023; Zhang et al., 2024;
Zong et al., 2024] leverage key quantities like gradients or
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logits that implicitly reflect the learning state of one modality
to guide interventions in another. Regardless of the method,
the rebalancing learning process is based on the current im-
balanced status, rather than the balanced status after instanta-
neous adjustment. This deferred rebalancing strategy has an
inherent limitation: it addresses modal imbalance only after
it has occurred, mitigating its impact but failing to prevent the
problem from arising in the first place.

Can we design an instantaneous modality rebalancing
method? The answer is yes. We propose a simple two-
pass forward strategy: the first forward pass probes the
modality strength and recalibrates the status weights instan-
taneously, while the second forward pass applies these cal-
ibrated weights to perform model learning under the bal-
anced status. Specifically, we first utilize geodesic multi-
modal mixup [Oh et al., 2023], a powerful tool to capture
heterogeneous representation within hypersphere, to establish
the relationship across modalities with fusion representations.
With this architecture, we can effortlessly adjust the modal-
ity strength between different modalities. Subsequently, we
perform the first forward pass to probe the strength of each
modality based on information entropy. Using this strength,
we adjust the intervention intensity for different modalities in
the mixup process. With this adjustment, the fusion of dif-
ferent modalities achieves a more balanced status. After that,
the second forward pass is conducted to finalize the forward
computation, loss calculation, gradient backpropagation, and
parameter updates, all under a relatively balanced status. This
two-pass forward process, involving evaluation followed by
balanced learning, is consistently applied throughout the en-
tire training procedure. To this end, this approach enables
instantaneous multimodal rebalancing, maximizing the po-
tential for improving the model’s overall performance. Our
contributions are listed as follows:

• A novel fusion representation strategy using geodesic
multimodal mixup is proposed, enabling the dy-
namic adjustment of fusion weights based on modality
strength.

• A novel two-pass forward strategy is proposed, which
first probes the strength of modality imbalance and then
facilitates multimodal learning under the balanced status
in the second forward pass.

• A novel learning method that incorporates a two-pass
forward approach into the entire training process is pro-
posed, dynamically performing both the evaluation and
balanced multimodal learning stages.

• Experiments reveal that our IPRM can achieve the best
performance on various datasets by comparing with
SOTA baselines.

2 Related Work
2.1 Rebalanced Multimodal Learning
Recently, multimodal learning has been observed to be less
effective than unimodal models for certain tasks such as mul-
timodal classification [Wang et al., 2020; Peng et al., 2022;
Zong et al., 2024]. To mitigate this gap and fully lever-
age complementary representations of different modalities,

various approaches [Wang et al., 2020; Peng et al., 2022;
Li et al., 2023; Hua et al., 2024; Zhang et al., 2024] have
been proposed.

Several approaches attempt to address this problem from a
theoretical standpoint. [Huang et al., 2021] demonstrates that
leveraging multiple modalities leads to a lower population
risk compared to utilizing only a subset of those modalities.
[Huang et al., 2022] examines this issue through the lens of
joint training. In multimodal learning, models corresponding
to different modalities tend to compete during training, caus-
ing the encoder network to focus on learning only a subset
of the modalities. [Wu et al., 2022] investigates the inherent
greediness of deep models in multimodal learning scenarios
and introduces an algorithm designed to balance the condi-
tional learning rates across modalities during training.

Other attempts [Peng et al., 2022; Li et al., 2023; Hua
et al., 2024; Zhang et al., 2024] focus on designing spe-
cific algorithms to address this issue. [Peng et al., 2022;
Fan et al., 2023; Li et al., 2023] propose algorithms based
on gradient modulation to balance the learning performance
across different modalities. [Yao and Mihalcea, 2022] seeks
to achieve consistency in learning speeds by dynamically ad-
justing the learning rates of models across different modal-
ities. [Yang et al., 2025] defines an adaptive element-wise
score function for parameter updates based on modal signif-
icance to rebalance optimization across modalities. [Zhang
et al., 2024; Hua et al., 2024; Fan et al., 2024] design an al-
ternating learning paradigm to enhance the interaction across
different modalities during training.

2.2 Mixup
Mixup is a widely used data augmentation strategy proposed
by [Zhang et al., 2018], aiming at improving model gener-
alization and robustness. It generates virtual training sam-
ples by linearly interpolating between pairs of examples and
their corresponding labels. Some variants of mixup have
been proposed to improve the original mixup strategy. For
instance, CutMix [Yun et al., 2019] proposes to cut and
paste the patches into images to improve the robustness of
model against input corruptions. Manifold mixup [Verma et
al., 2019] design to improve the generalization of deep neu-
ral networks by applying linear interpolation not in the in-
put space, but in the hidden representations of the model.
Additionally, several mixup strategies [Fang et al., 2022;
Oh et al., 2023] for multimodal data have also been proposed.
Representative geodesic multimodal mixup [Oh et al., 2023]
provides a powerful tool to establish the correlation relation-
ship across modalities, capturing the heterogeneous represen-
tation within hypersphere.

3 Multimodal Learning
Without loss of generality, we use audio and video modalities
as illustrative examples. Notably, IPRM can be readily ex-
tended to scenarios involving more than two modalities. We
suppose that the multimodal data training set with K category
labels is defined as: T = {(xi,yi)}

Nt
i=1, where x = (xa,xv)

respectively denote the audio and video data points, Nt is the
number of training data, and yi ∈ {1, · · · ,K} denotes the
i-th category label.
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Figure 1: The architecture of our method.

Multimodal learning aims to train a model that maps data
points into label space, and approximates its label as accu-
rately as possible. In deep learning-based multimodal learn-
ing, deep neural networks serve as the foundational compo-
nents of the model. Concretely, we employ ga and gv to de-
note the encoders for the audio and video modalities. Given
xa
i and xv

i , the representations can be calculated by:
∀o ∈ {a, v}, zo

i = go(x
o
i ; Θo),

where Θo denotes the parameters. Then we take a fusion
function to obtain fusion representation:

zi = f(za
i , z

v
i ),

where f denotes the fusion function like sum or averaging.
Following [Fan et al., 2023] and [Wei and Hu, 2024], we

consider to minimize both unimodal and multimodal losses.
Hence, we define the classifiers for unimodal and multimodal
branches as ha, hv and h, respectively. The predictions can
be calculated by:

∀o ∈ {a, v},po
i = softmax(ho(z

o
i ; Φo)),

pi = softmax(h(zi; Φ)),

where Φo and Φ denote the parameters of the classifier.
Then the unimodal and multimodal loss functions can be

formed as:

∀o ∈ {a, v}, ℓu(xo
i ,yi) = −

∑K

k=1
1k=yi

log(po
ik),

ℓm(xi,yi) = −
∑K

k=1
1k=yi

log(pik),

where pik denotes the k-th element of pi, and 1condition de-
notes the indicator function, i.e., 1true = 1 and 1false = 0.

The overall loss can be formed as:
ℓ(xi,yi) = ℓm(xi,yi; Φ) +

∑
o∈{a,v}

ℓu(x
o
i ,yi; Θo,Φo).

Then, the gradient is computed through the backward pro-
cess, and the parameters are updated accordingly.

4 Methodology
The architecture of IPRM is presented in Figure 1. We first
introduce geodesic multimodal mixup to bridge the fusion
representation. Then, we design a two-pass forward strat-
egy to probe the strength of modality imbalance first and then
perform rebalanced learning. Finally, a dynamic learning al-
gorithm is proposed to impose the two-pass forward strategy
into the entire training process.

4.1 Multimodal Fusion with GMM
Instead of linear mixup, we utilize geodesic multimodal
mixup strategy to construct heterogeneous representations
across modalities. Specifically, we first generate normalized
representation for both audio and video modalities:

∀o ∈ {a, v}, z̄o
i =

zo
i

∥zo
i ∥2

.

Then the geodesic multimodal mixup strategy is imposed
on these vectors, and we can redefine the fusion function as:

fGMM(z̄
a
i , z̄

v
i , λ) =

sin(λθ)

sin(θ)
z̄a
i +

sin((1− λ)θ)

sin(θ)
z̄v
i , (1)

where θ = arccos(⟨z̄a
i , z̄

v
i ⟩) and λ is a parameter. Symbol

⟨·, ·⟩ denotes the inner product of two vectors.
After obtaining the fusion representation with geodesic

multimodal mixup, we can further feed them into classifica-
tion networks and calculate the prediction. Based on predic-
tion, the multimodal loss is calculated correspondingly.

We use λ to control the influence strength of different
modalities, thereby achieving the goal of characterizing in-
tervention based on the strength of each modality.

4.2 Instantaneous Probe-and-Rebalance for MML
We then present the two-pass forward strategy in detail. This
strategy can be divided into instantaneous probing phase and
rebalanced learning phase.
Instantaneous Probing Phase: At the t-th iteration, given
a batch of data points, we first utilize encoders to extract
features. Then, during the instantaneous probing phase, we
can probe the strength of modality imbalance based on mul-
timodal and unimodal predictions after we obtain the fusion
representation z̄i and prediction p̄i:

z̄i = fGMM(z̄
a
i , z̄

v
i , λ

a
t ), p̄i = softmax(h(z̄i)),

where λa
t denotes the weight controlling the strength of the

modality before learning for audio, and λv
t = 1− λa

t .
Then, we utilize a widely used measure Kull-

back–Leibler (KL) divergence to evaluate the strength
of each modality:

∀o ∈ {a, v},DKL(Po|P̄; Tt) =
∑

xi∈Tt

po
i log

(
po
i

p̄i

)
,

where Po and P̄ denote the corresponding prediction distri-
butions. KL divergence quantifies the distance between dif-
ferent distributions. A smaller value indicates that the two
distributions are closer. Therefore, a modality with a large
KL divergence is considered a weak modality, and its weight
should be reduced during the hybrid enhancement process.
Conversely, a modality with a small KL divergence is a strong
modality, and its weight should be increased. Hence, we de-
fine the instantaneous strength weight of a specific modality
based on the proportion of the KL divergence from another
modality:

ωa
t ≜

DKL(Pv|P ; Tt)
DKL(Pa|P ; Tt) +DKL(Pv|P ; Tt)

,

ωv
t ≜ 1− ωa

t . (2)



Algorithm 1: The IPRM learning algorithm.
Input : Training set T .
Output: Learned parameters of all models.
INIT Initialize parameters {Θa,Θv,Φ,Φa,Φv}, maximum

iterations Mt, learning rate ηα, modality weight
ωa
0 = ωv

0 = 0.5, λa
1 and λv

1 based on Eq. (4).
for t = 1 to Mt do

Sample a mini-batch data samples Tt.
Calculate features based on ga(·) and gv(·).
/* The first forward phase. */
Calculate fused feature z̄ the by the first forward phase.
Calculate the instantaneous strength score based on

Eq. (2).
Calculate the balanced weight based on Eq. (3).
/* The second forward phase. */
Calculate the prediction p̄ by the second forward phase.
Calculate the gradients based on backward phase.
Update the network parameters based on SGD.
Update λa

t and λv
t based on Eq. (4).

end

Rebalanced Learning Phase: As the instantaneous strength
score accurately captures the imbalance degree among differ-
ent modalities, we directly use this parameter to update the
balanced weights for each modality at t-th iteration:

∀o ∈ {a, v}, λ̂o
t = ωo

t . (3)

Then, λ̂a
t , λ̂v

t are used to perform the second forward phase
to obtain fusion representation under the balanced status:

ẑi = fGMM(z̄
a
i , z̄

v
i , λ̂

a
t ), p̂i = softmax(h(ẑi)).

The multimodal loss can be calculated by:

ℓ̂m(xi,yi) = −
∑K

k=1
1k=yi

log(p̂ik).

Accordingly, we derive the gradients of the parameters and
update them to finish the model training.

After completing the learning in t-th iteration, we update
the initial weights for the next iteration to adjust the interven-
tion intensity between modalities accordingly. We utilize the
exponential moving average (EMA) to update the weight:

∀o ∈ {a, v}, λo
t+1 =

{
ωo
t , t = 0,

αλo
t + (1− α)ωo

t , t > 0.
(4)

Here, α is a hyper-parameter to tune the weight, and ωo
0 is

initially set to be 0.5 in practice.
Learning Algorithm: Finally, we briefly summarize our al-
gorithm. We train the model using the entire training dataset
T in a mini-batch style. At t-th iteration, we first utilize en-
coders to extract features. And then we perform the first for-
ward phase to obtain the instantaneous strength weight ωa

t
and ωv

t . Based on instantaneous strength weight ωa
t and ωv

t ,
we can update the modality weight λa

t and λv
t as λ̂a

t and λ̂v
t .

In the second forward phase, the models are updated under
balanced status by using λ̂a

t and λ̂v
t . The whole algorithm is

summarized in Algorithm (1).

5 Experiments
5.1 Experimental Setup
Datasets: We utilize five datasets for experiments, i.e.,
CREMA-D [Cao et al., 2014], KSounds [Arandjelovic and
Zisserman, 2017], NVGesture [Molchanov et al., 2016],
IEMOCAP [Busso et al., 2008], and Sarcasm [Cai et
al., 2019] datasets. Among these datasets, the CREMA-
D and KSounds datasets involve audio and video modalities.
NVGesture consists of RGB, optical flow (OF), and Depth
modalities. IEMOCAP is also a trimodal dataset, which con-
tains audio, video and text modalities. Sarcasm dataset is an
image-text dataset.

The CREMA-D dataset contains 7,442 clips from 91 ac-
tors. And it is divided into a training set with 6,698 samples
and a testing set with 744 samples. The KSounds dataset is
divided into a training set with 15K samples, a validation set
with 1.9K samples, and a testing set with 1.9K samples. For
NVGesture dataset, it is split as 1,050 data points for train-
ing and 482 for testing. And IEMOCAP dataset is split as a
training set with 3,318 samples and a testing set with 1,107
samples. Sarcasm dataset consists of 24,635 and is split as a
training set with 19,816 samples, a testing set with 2,409, and
a validation set with 2,410 samples.
Baselines: Considering that geodesic multimodal mixup can
be treated as a modified fusion function, we first utilize uni-
modal approaches and naive fusion strategies including Con-
cat, Sum and Weight for comparison. Furthermore, a wide
range of SOTA rebalanced multimodal learning approaches
are used for comparison. They are OGR-GB [Wang et al.,
2020], MSLR [Yao and Mihalcea, 2022], OGM [Peng et al.,
2022], PMR [Fan et al., 2023], AGM [Li et al., 2023], MM-
Pareto [Wei and Hu, 2024], Reconboost [Hua et al., 2024],
MLA [Zhang et al., 2024], and LFM [Yang et al., 2024a].
Evaluation Metrics: Following [Zhang et al., 2024; Yang et
al., 2024a], the accuracy and mean average precision (MAP)
are used to evaluate the performance on CREMA-D and
KSounds datasets. Furthermore, for the remaining datasets,
we utilize accuracy and macro F1 (Macro-F1) for evaluation.
The accuracy evaluates the degree of agreement between pre-
dictions and ground-truth labels. The MAP is obtained by
averaging the average precision across all categories, while
the macro-F1 is determined by computing the mean of the F1
scores for each category.
Implementation Details: Following [Peng et al., 2022], we
adopt ResNet18 [He et al., 2016] as backbones for both audio
and video modalities on CREMA-D and KSounds datasets.
And the models are trained from scratch. For NVGes-
ture dataset, we use I3D [Carreira and Zisserman, 2017]
as unimodal backbone, as described in [Wu et al., 2022].
Following [Zhang et al., 2024], we respectively employ
large pretrained model M3AE [Geng et al., 2022] and CAV-
MAE [Gong et al., 2023] as encoders for image/text and au-
dio modalities on IEMOCAP dataset. For Sarcasm, ResNet50
is utilized for the image modality and BERT [Devlin et al.,
2019] for the text modality, which is consistent with [Yang et
al., 2024a]. The optimization algorithm for the audio-video
and trimodal datasets is stochastic gradient descent (SGD),
while Adam is employed for the image-text dataset. The



Dataset Metric Unimodal Naive Fusion IPRMA/A/R/A/I V/V/O/V/T D/T Concat Sum Weight

CREMA-D Accuracy 63.17% 45.83% N/A 63.61% 63.44% 66.53% 84.27% (↑17.74%)
MAP 68.61% 58.79% N/A 68.41%↓ 69.08% 71.34% 90.66% (↑19.32%)

KSounds Accuracy 54.12% 55.62% N/A 64.55% 64.90% 65.33% 74.37% (↑9.04%)
MAP 56.69% 58.37% N/A 71.30% 71.03% 71.10% 80.63% (↑9.33%)

NVGesture Accuracy 78.22% 78.63% 81.54% 82.37% 80.50%↓ 78.42%↓ 85.89% (↑3.52%)
Macro-F1 78.33% 78.65% 81.83% 82.70% 80.67%↓ 79.39%↓ 86.34% (↑3.64%)

IEMOCAP Accuracy 58.45% 30.71% 70.55% 75.97% 76.06% 69.29%↓ 80.22% (↑4.16%)
Macro-F1 58.29% 11.75% 69.93% 75.88% 76.03% 68.91%↓ 80.63% (↑4.60%)

Sarcasm Accuracy 71.81% 81.36% N/A 82.86% 82.94% 82.65% 85.14% (↑2.20%)
Macro-F1 70.73% 80.56% N/A 82.40% 82.47% 82.19% 84.41% (↑1.94%)

Table 1: Performance comparison with vanilla MML. The best and the second best results are denoted as bold and underline, respectively.
The symbol ↓ indicates the MML result which underperforms the best unimodal result.

Dataset Metric OGR-GB MSLR OGM PMR AGM MMPareto ReconBoost MLA LFM IPRM

CREMA-D Accuracy 64.65% 68.68% 66.12% 66.59% 67.33% 74.87% 75.57% 79.43% 83.62% 84.27% (↑0.65%)
MAP 73.92% 74.12% 73.72% 70.58% 78.07% 85.35% 81.40% 85.72% 90.06% 90.66% (↑0.60%)

KSounds Accuracy 67.22% 67.56% 65.82% 66.75% 67.91% 70.00% 68.55% 70.04% 72.53% 74.37% (↑1.84%)
MAP 72.74% 72.82% 71.59% 72.74% 73.88% 78.50% 76.62% 79.45% 78.97% 80.63% (↑1.66%)

NVGesture Accuracy 82.99% 82.37% N/A N/A 82.79% 83.82% 83.86% 83.40% 84.36% 85.89% (↑1.53%)
Macro-F1 83.05% 82.84% N/A N/A 82.84% 84.24% 84.34% 83.72% 84.68% 86.34% (↑1.66%)

IEMOCAP Accuracy 70.10% 76.69% N/A N/A 77.51% 77.69% 76.87% 79.31% 78.41% 80.22% (↑0.91%)
Macro-F1 69.90% 76.77% N/A N/A 77.29% 77.89% 77.08% 79.73% 78.51% 80.63% (↑0.90%)

Sarcasm Accuracy 82.86% 84.39% 83.60% 83.10% 83.06% 83.48% 84.37% 84.26% 84.97% 85.14% (↑0.17%)
Macro-F1 82.15% 83.78% 82.93% 82.56% 82.93% 82.84% 83.17% 83.48% 84.57% 84.41% (↓0.16%)

Table 2: Performance comparison with SOTA rebalanced multimodal learning approaches. The best and the second best results are denoted
as bold and underline, respectively.

learning rate is set to 10−2 for the audio-video datasets and
NVGesture, 10−3 for IEMOCAP, and 10−4 for Sarcasm, re-
spectively. It is then reduced by a factor of 10 when the
loss saturates. The batch size is set to be 64 for CREMA-D,
KSounds and Sarcasm, while is respectively set to be 2 and 16
for NVGesture and IEMOCAP due to out-of-memory issue.
Furthermore, the hyper-parameter α is set to 0.8 for audio-
video datasets and 0.7 for trimodal and image-text datasets,
based on cross-validation strategy. Unless otherwise speci-
fied, the mixup in our experiments all uses the paired sample
method, and we will discuss the impact of this strategy in sub-
section 5.5. All experiments are conducted on GeForce RTX
4090 NVIDIA card.

5.2 Main Results
We first compare our method with unimodal approaches and
naive multimodal learning with different fusion functions,
i.e., concat, sum, and weight [Yang et al., 2019]. The results
are reported in Table 1, where “A/A/R/A/I” and “V/V/O/V/T”
denote the abbreviations of the modalities used for evaluation
across all datasets, and “D/T” respectively denote the abbrevi-
ations of depth (for NVGesture dataset) and text (for IEMO-
CAP dataset). The results in Table 1 demonstrate that: (1).
The multimodal learning approach outperforms the single-
modal approach in most cases but performs worse in certain
scenarios, which is indicated by the symbol “↓”; (2). Our
IPRM can achieve the best results in all cases by a large mar-
gin, demonstrating that it is not merely a simple fusion vari-

Dataset w/ L-Mixup w/o EMA One-Pass IPRM
CREMA-D 75.53% 83.06% 83.47% 84.27%
KSounds 71.94% 73.91% 73.64% 74.37%
NVGesture 84.85% 85.27% 84.44% 85.89%
IEMOCAP 75.79% 78.05% 77.60% 80.22%
Sarcasm 84.52% 84.81% 84.10% 85.14%

Table 3: Ablation study on all datasets. The best results are shown
in bold.

ant but an algorithm specifically designed for the practical
requirements of multimodal learning.

Then we compare our IPRM with various existing SOTA
rebalanced multimodal learning approaches. Table 2 pro-
vides the corresponding results, where the results of OGM
and PMR on NVGesture and IEMOCAP datasets are denoted
as “N/A” as these approaches cannot be applied to the case
with three modalities. The results in Table 2 demonstrate
that our IPRM surpasses the existing state-of-the-art algo-
rithm and achieves superior performance in almost all cases,
demonstrating that the module we designed effectively ad-
dresses the challenge of modality imbalance.

5.3 Ablation Study
We study the impact of key components of our IPRM, includ-
ing geodesic multimodal mixup, EMA strategy, and two-pass
forward phase. Specifically, we report the accuracy to com-
pare the IPRM with its variants. The variants include the vari-
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ant using linear mixup, the variant without EMA strategy, and
the variant with one-pass forward phase, which are denoted
as “w/ L-Mixup”, “w/o EMA”, and “One-Pass”, respectively.
For One-Pass variant, the loss calculation, gradient calcula-
tion by backward, and parameter update are performed in the
first forward phase, and the ωa

t and ωv
t are used to update

λa
t+1 and λv

t+1 at the next iteration.
The accuracy on all datasets is reported in Table 3. The re-

sults reveal that both geodesic multimodal mixup, EMA strat-
egy and two-pass forward phase can boost performance. On
CREMA-D, KSounds, and IEMOCAP datasets, the most sig-
nificant performance improvement is attributed to the use of
geodesic multimodal mixup. In contrast, for the remaining
datasets, the module contributing the greatest impact on per-
formance is two-pass forward phase.

5.4 Sensitivity to Hyper-Parameter
We further explore the sensitivity to the hyper-parameter α.
Parameter α ∈ (0, 1) is the weight of the EMA strategy in
Equation (4). The accuracy on all datasets is reported in Fig-
ure 2, where α is chosen from the list [0.1, 0.2, · · · , 0.9]. The
accuracy in Figure 2 demonstrates that IPRM is not sensitive
to the hyper-parameter α in a large range.

5.5 Further Analysis
GMM with Unpaired Sampling: In IPRM, we utilize paired
multimodal data to perform model training. Thus we do not
discuss the fusion strategy for category label when we ap-
ply the geodesic multimodal mixup [Oh et al., 2023] in our
method. In practical scenarios, unpaired multimodal data
may often be used for training. Therefore, this section dis-
cusses the impact of paired and unpaired sampling strategies
on the overall performance. For geodesic multimodal mixup,
given an unpaired multimodal data {(xi,yi), (xj ,yj)}, the
augmented ground-truth can be formulated by linear combi-
nation, i.e., y

′
= λyi + (1 − λ)yj . We exploit the influence

of geodesic multimodal mixup with unpaired sampling. The
accuracy on all datasets is presented in Figure 3. From Fig-
ure 3, we can see that across all datasets, the overall perfor-
mance of the unpaired sampling method is slightly inferior to
that of the paired sampling method. This performance gap
can be attributed to three factors: (1). Unpaired sampling
disrupts the exploration of complementary multimodal infor-
mation; (2). Mixing labels introduces additional noise into
the training process; (3) Unlike standard mixup, IPRM’s λ is
not randomly generated from a distribution, which may shift

Method Accuracy Training time (second/epoch)
Naive MML 63.61% 55.08 ± 0.2729
MLA 79.43% 71.12 ± 0.7025
LFM 83.62% 60.14 ± 0.0920
IPRM 84.27% 57.03 ± 0.2138

Table 4: Computation cost comparison on CREMA-D dataset.

Dataset Modality Single-CLS Tri-CLS

NVGesture

RGB 78.84% 77.80%
OF 79.25% 81.12%
Depth 82.78% 82.16%
Multi 85.89% 85.89%

IEMOCAP

Audio 58.27% 54.20%
Video 32.07% 30.80%
Text 71.91% 71.91%
Multi 78.95% 80.22%

Table 5: Mixup strategy comparison on trimodal dataset.

the distribution of the generated labels towards the stronger
modality.
Computation Cost of Two-Pass Forward: As IPRM adopts
a two-pass forward strategy, we compare the computation
cost to illustrate the influence of training time. We report
the accuracy and computation cost on CREMA-D for naive
MML, MLA, LFM, and IPRM. The results in Table 4 show
that IPRM exhibits slightly slower training compared to naive
MML. However, it achieves the best performance among all
methods. Notably, the IPRM’s algorithmic complexity re-
mains linear with respect to the sample size N , i.e., O(N),
reflecting its linear scalability. During inference, IPRM fol-
lows the standard MML inference procedure and does not in-
troduce any additional computational overhead.
GMM Strategy for Trimodal Dataset: For trimodal
datasets, we employ the GMM strategy between any two
modalities to achieve modal fusion. Consequently, our struc-
ture incorporates three fused classification heads. For in-
stance, in NVGesture dataset, the classification heads corre-
spond to RGB and OF, RGB and depth, as well as OF and
depth. However, this structure is somewhat cumbersome.
Therefore, we explore an alternative strategy to simplify the
design of classification heads for trimodal settings.

Specifically, we design random modality sampling strat-
egy for trimodal dataset. In the architecture, we only uti-
lize one classifier for all three modalities. During the for-
ward phase, we randomly select two modalities to perform
modality fusion. We compare these two strategies on trimodal
datasets, i.e., NVGesture and IEMOCAP datasets. The re-
sults in Table 5 demonstrate that the method based on the ran-
dom modality sampling strategy achieves comparable results,
where the random modality sampling strategy and the strat-
egy adopted in the paper are respectively denoted as “Single-
CLS” and “Tri-CLS”. Therefore, in practice, a specific archi-
tecture or strategy can be selected based on the requirements.
Fine-Tuning with Pretrained CLIP: We further study the
applicability of IPRM for large-scale language vision pre-
trained models like CLIP [Radford et al., 2021] on Sar-
casm dataset. The encoders for image and text modalities
are replaced by the ViT-B/16 and Transformer from the CLIP



Avg. Distance: 12.04

(a). L-Mixup@Audio.

Avg. Distance: 12.42
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(c). LFM@Audio.

Avg. Distance: 11.96

(d). IPRM@Audio.

Avg. Distance: 15.08

(e). L-Mixup@Video.

Avg. Distance: 17.61

(f). MLA@Video.

Avg. Distance: 15.14

(g). LFM@Video.

Avg. Distance: 12.24

(h). IPRM@Video.

Figure 4: t-SNE visualization results on CREMA-D dataset. The average distance of each multimodal data sample to its respective cluster
center is presented in each sub-figure.

Method Image Text Multiple
CLIP 74.82% 82.15% 83.11%
CLIP+MLA 77.45% 83.19% 84.45%
CLIP+LFM 79.78% 83.67% 85.42%
CLIP+IPRM 77.46% 85.43% 86.47%

Table 6: Fine-Tuning with Pretrained CLIP on Sarcasm dataset.

model. Then the fine-tuning process is performed to fit the
downstream task. The accuracy performance is reported in
Table 6, where we utilize “CLIP+Method” to denote the spe-
cific Method to train the models with replaced encoders.
According to the results in Table 6, we can see that: (1).
Comparing the results of fine-tuning downstream tasks using
the rebalanced MML method with those based on the CLIP
model reveals that fine-tuning on downstream tasks leads to
improved model performance; (2). IPRM can achieve the best
accuracy in almost all cases by comparing IPRM with LFM,
MLA, and naive CLIP.
Visualization: To study the properties of the learned em-
beddings for different methods, we present the visualization
results by using t-SNE [Van der Maaten and Hinton, 2008]
on CREMA-D dataset. We select three methods for compar-
ison, including the method with linear mixup (denoted as L-
Mixup), MLA, LFM and IPRM.

The t-SNE visualzation results on CREMA-D dataset are
presented in Figure 4, where we also present the average dis-
tance of each multimodal data sample to its respective cluster
center in each sub-figure. We can find that our IPRM can
achieve smaller distance compared with the remaining ap-

proaches, demonstrating that IPRM effectively learns dis-
criminative representations. This effect is particularly pro-
nounced in the video modality, i.e., the weak modality for
CREMA-D dataset, demonstrating that IPRM more effec-
tively addresses the modality imbalance issue.

6 Conclusion
In this paper, we propose a novel instantaneous probe-and-
rebalance multimodal learning approach, namely IPRM, by
employing two-forward phase strategy to capture the learn-
ing status instantaneously. We utilize geodesic multimodal
mixup to probe the strength using dynamic weight. The
weights are subsequently recalibrated instantaneously based
on the evaluated strength, enabling balanced training through
an additional forward pass. This dynamic adjustment is per-
formed continuously throughout the training process. Experi-
ments demonstrate that our IPRM can achieve the best perfor-
mance on widely used datasets comparing numerous state-of-
the-art baselines. In future reseach, related extensions, such
as integrating IPRM with attention mechanisms and adapt-
ing IPRM to streaming multimodal data scenarios, remain
promising for further improving the efficiency and scalabil-
ity of the approach.
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